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Abstract
In this paper, we show that the dilatation operator in one dimension can be
used to enlarge the Lie algebra generated by the raising and lowering operators
for some classes of special functions. As a result, we are able to derive new
recursion relations and addition formulae for these functions. Furthermore,
we derive generalized ladder operators for these functions under coordinate
stretching and translations.

PACS numbers: 02.30.Gp, 02.20.Sv, 03.65.Fd

1. Introduction

The popularity of the factorization method in theoretical physics is due in part to the seminal
paper of Infeld and Hull [1] and its close relation to the functions of mathematical physics.
Since the publication of this paper, various extensions of the method to systems of differential
equations appeared in the literature [2–5] and the Lie algebraic contents and implications of
this method were discussed by various authors [6, 7]. Recently, however, there was renewed
interest in the application of this method to shape invariant potentials [8] and to problems in
supersymmetric quantum mechanics [9, 10]. A recent paper [9] provides a comprehensive
bibliography to these applications.

Our objective in this paper is to show that there are still some Lie algebraic aspects of
some classes of special functions (which are solutions to factorizable equations) that were not
recognized in the literature. Thus, when the Lie algebraic aspects of these functions were
considered in the literature they were limited to the Lie algebra generated by the raising and
lowering operators. Here we show that in addition to these operators, the dilatation and the
translation operators can be added to these Lie algebras for some families of factorizable
equations. This is in spite of the fact that these operators are not in the universal enveloping
algebra generated by the raising and lowering operators. (However, the dilatation operator
did appear in related applications [11, 12].) To put this enlargement in more general context,
we note that extremal projection operators (which are also outside the universal algebra of
the raising and lowering operators) were found for various Lie algebras. These operators
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are used to resolve various classification problems related to the representations of these
algebras [13, 14] and form an active research field.

As a consequence of the enlargement of the Lie algebra acting on these families of special
function, we are able derive new recursion relations and ‘addition formulae’. These were
always considered as an important issue in the field of special functions and mathematical
physics in general. They are used in many applications and have a considerable importance
for various approximation schemes as is attested by the ‘Bateman project’ [15] and Truesdell
monograph on the special functions [16]. In addition to this we derive in this paper raising and
lowering operators for these classes of functions under coordinate stretching or translations.
(That is the dependence on x is replaced by a dependence on eαx or x + α). We believe that
these operators did not appear in the literature before. (As usual this last statement cannot be
considered as ‘absolute’).

The plan of the paper is as follows: In section 2, we discuss and derive some formulae for
the action of the dilatation operator and its powers. In section 3, we show that this operator
can be used to enlarge the Lie algebra generated by the ladder operators for some classes
of special functions and discuss its action on these functions. We also obtain new recursion
relations for these classes of special functions. In section 4, we use these facts to derive some
addition formulae for the Hermite polynomial and Bessel functions under the dual action of
translations and dilatations. In section 5, we derive new ladder operators for these classes of
functions with dilated and translated variables. We end in section 6 with some conclusions.

2. Dilatation and translation operators in one dimension

The canonical differential realization of dilatation and translation operators in one dimension
is given by

D = x
∂

∂x
, T = ∂

∂x
. (2.1)

The commutation relation between these operators is

[D, T ] = −T . (2.2)

The action of the one parameter groups generated by these operators on a smooth function
f (x) is given by

eαDf (x) = f (eαx), eβT f (x) = f (x + β). (2.3)

Furthermore by induction we have that

DmT = (−1)mT (I − D)m (2.4)

(where I is the identity operator). It then follows that

eαDT = e−αT eαD. (2.5)

We can now use equations (2.2), (2.4) to show that

DmT n = (−1)mT (I − D)mT n−1 (2.6)

and hence

eαDT n = e−nαT n eαD. (2.7)

Finally we obtain

eαD eβT = eβ e−α

eβT eαD. (2.8)
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Since D = xT we can prove (by induction) that

Dk =
k∑

m=0

γ k
mxmT m (2.9)

where γ k
m satisfy the recursive relation

γ k
m = γ

(k−1)
m−1 + mγ (k−1)

m , 2 � m � k − 1 (2.10)

and

γ k
1 = γ k

k = 1. (2.11)

In fact we have

D2 = xT xT = x2T 2 + xT , D3 = x3T 3 + 3x2T 2 + xT (2.12)

which verifies equations (2.10), (2.11) for k = 2, 3. Assuming equation (2.9) is true for k we
have for k + 1

Dk+1 = D(Dk) = xT

(
k∑

m=0

γ k
mxmT m

)
(2.13)

and the relations (2.10), (2.11) now follow from the commutation relation [T , xn] = nxn−1.
(The coefficients γ k

m which are introduced here are actually the Stirling numbers of the second
kind [19].)

In the notation of [1], a second-order differential equation in normal form

y ′′(λ,m, x) + r(x,m)y(λ,m, x) + λy(λ,m, x) = 0 (2.14)

is factorizable if one can find first-order (ladder) operators Rm,Lm in the form

Rm = k(m + 1, x) − d

dx
, Lm = k(m, x) +

d

dx
(2.15)

so that the eigenfunctions of equation (2.14) satisfy

Rmy(λ,m, x) =
√

λ − �(m + 1)y(λ,m + 1, x) (2.16)

and

Lmy(λ,m, x) =
√

λ − �(m)y(λ,m − 1, x) (2.17)

where � is some function of m only (this is not the Euler � function). In the following we
suppress for brevity the dependence of y(λ,m, x) on λ. We also observe that the dependence
of Rm,Lm on m can be replaced by a differential operator (so that these operators become
‘pure’ differential operators acting on L2(R2) as was done in [5]).

It was shown in the literature [5, 6] that the factorization method has a Lie algebraic
content and the ladder operators with their commutator close a Lie algebra. This fact combined
with the action of the corresponding one parameter groups of these operators has led to the
derivation of various sum rules for some classes of special functions [5, 6, 9] and many other
applications in theoretical physics [8].

In the following, we show that in some cases the Lie algebra generated by the ladder
operators can be enlarged by the addition of the dilatation and translation operators and this
leads to a richer structure for the corresponding eigenfunctions.

3. Lie algebras of some factorizable equations

In this section, we give some specific examples of factorizable equations for which the Lie
algebra of the ladder operators can be enlarged to include dilatations and translations. We
then use these operators to derive new ‘higher order’ recursion relations for these classes of
special functions.
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3.1. Hermite polynomials

Hermite polynomials Hn(x) satisfy

H ′′
n (x) − 2xH ′

n(x) + 2nHn(x) = 0 (3.1)

where n is an integer. The ladder operators for these functions are

R = 2x − d

dx
, L = d

dx
. (3.2)

Their action on Hn(x) is given by

RHn(x) = Hn+1(x), LHn(x) = 2nHn−1(x) (3.3)

and their commutation relations yield

[R,L] = −2I. (3.4)

We can now enlarge this Lie algebra by adding the ‘exterior’ dilatation operator D. It is
straightforward to verify the following commutation relations:

[D,L] = −L, [D,R] = R + 2L. (3.5)

To obtain the explicit action of the operator D on Hn(x) we rewrite D as xL and hence

DHn(x) = 2nxHn−1(x). (3.6)

Thus, the extended Lie algebra for the Hermite polynomials contains the four operators
{R,L,D, I }.

For higher powers of D we have the recursion relation

DkHn(x) = 2nx(D + 1)k−1Hn−1(x), 1 � k � n. (3.7)

However in this case T = L and therefore

T mHn(x) = 2m n!

(n − m)!
Hn−m(x), 1 � m � n. (3.8)

From equation (2.9) it then follows that

DkHn(x) =
k∑

m=0

2m n!

(n − m)!
γ k

mxmHn−m(x), 1 � k � n. (3.9)

To demonstrate the applicability of these relations we use them to rederive the basic
recursion relation for the Hermite polynomials. Thus using equation (3.3) we obtain

[D,R]Hn = (R + 2L)Hn = Hn+1 + 4nHn−1 (3.10)

and

D(R(Hn)) − R(D(Hn)) = 2(n + 1)xHn − (xR − 1)(2nHn−1) = 2xHn + 2nHn−1 (3.11)

where we have used the commutation relation [R, x] = −1. Combining equations (3.10),
(3.11) we obtain

Hn+1 − 2xHn + 2nHn−1 = 0. (3.12)

This is the basic recursion relation for the Hermite polynomial. Its derivation here demonstrates
that it is due to the properties of these functions under the action of the dilatation operator.

The recursion relations given by equations (3.8), (3.9) are new generalizations of this
basic recursion relation for the Hermite polynomials.
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3.2. Hermite functions

Hermite functions (or equivalently the eigenfunctions of the Harmonic oscillator) satisfy the
differential equation

h′′
n(x) − x2h′

n(x) + (2n + 1)hn(x) = 0 (3.13)

where n is an integer. The ladder operators for these functions are

R = x − d

dx
, L = x +

d

dx
. (3.14)

These operators are multiplied sometimes by a constant whose value depends on the
normalization chosen for hn(x). (Here we follow [1, 5] which normalize the L2 norm of
these functions to 1.)

The action of these operators on hn(x) is given by

Rhn(x) = [(2(n + 1)]1/2hn+1(x), Lhn(x) = (2n)1/2hn−1(x) (3.15)

with h0(x) = e−x2/2.
These ladder operators R,L satisfy the same commutation relations as in equation (3.4).

It then follows that the corresponding Lie algebra can be enlarged as before by the addition of
the dilatation operator and we have

[D,L] = R, [D,R] = L. (3.16)

We also observe that T = L−R
2 .

Since D = x L−R
2 we have the following recursive relation for k � 1:

Dkhn(x) = x

2
(D + 1)k−1[(2n)1/2hn−1(x) − ((2(n + 1))1/2hn+1(x)]. (3.17)

A more explicit formula for this action can be derived again by the use of equation (2.9)
which leads to

Dkhn(x) =
k∑

m=0

2−mγ k
mxm(R − L)mhn(x). (3.18)

It is easy to compute these higher order recursion relations explicitly for low values of
k. However, for arbitrary values of k the evaluation of these recursion relations requires the
normal ordering of general monomials in the operators R,L which is not a straightforward
task [17–19] (and references cited therein).

3.3. Bessel functions

The Bessel differential equation is

J ′′
n (r) +

1

r
J ′

n(r) −
(

n2

r2
− 1

)
Jn(r) = 0 (3.19)

where n is an integer. The ladder operators for these functions are

R = n

r
− d

dr
, L = n

r
+

d

dr
. (3.20)

Strictly speaking these operators should be denoted by Rn and Ln. However, in the following
we shall drop this subscript unless it is needed. It is possible, however, to obtain a differential
expression independent of n for these operators as was done in [5]. The action of these
operators on Jn(r) is given by

RJn(r) = Jn+1(r), LJn(r) = Jn−1(r). (3.21)
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Hence they satisfy the commutation relations

[R,L] = 0. (3.22)

We can enlarge this algebra by the addition of the dilatation operator D = r d
dr

and we obtain

[D,L] = −L, [D,R] = −R (3.23)

(T is already in the algebra). To obtain the action of D on Jn(r) we rewrite it as D = r Ln−Rn

2
(which is true for any n). This leads to the following recursive relation for k � 1:

DkJn(r) = r

2
(D + 1)k−1[Jn−1(r) − Jn+1(r)]. (3.24)

In this formula, we must re-express D in terms of Rn and Ln according the index of the Bessel
function on which it acts. To derive a more explicit formula for this action we observe that
T = Ln−Rn

2 for any n and use equation (3.22) to obtain

T mJn(r) = 1

2m

m∑
k=0

(
m

k

)
Jn+m−2k(r). (3.25)

Using equation (2.9) then yields

DkJn(r) =
k∑

m=0

1

2m
γ k

mxm

m∑
k=0

(
m

k

)
Jn+m−2k(r). (3.26)

These are again new higher order recursion relations for these functions.
As a simple application of the commutation relations between D and Rn, we derive the

following recursion relation. Using

[D,Rn]Jn(r) = −RnJn(r) = −Jn+1(r) (3.27)

and utilizing the relation

T = d

dr
= Ln − Rn

2
(3.28)

for any n leads to

DRnJn(r) = r

2
[Jn(r) − Jn+2(r)] (3.29)

RnDJn(r) = Rn

2
[rJn−1(r) − rJn+1(r)]. (3.30)

Simplifying equation (3.30) by using the commutation relation [Rn, r] = −1 and combining
it with equations (3.27)–(3.29) yields the recursion relation

(n + 1)Jn+1 − (n − 1)Jn−1 +
r

2
(Jn−2 − Jn+2) = 0. (3.31)

3.4. Associated Laguerre’s polynomials

These polynomials Ln,m(t) satisfy the differential equation

z′′(t) + (m + 1 − t)z′(t) + nz(t) = 0 (3.32)

where n,m are integers. To derive ladder operators for these functions we rewrite (as first
step) this equation in self-adjoint form

d

dt
[tm+1 e−t z′(t)] + ntm e−t z(t) = 0. (3.33)
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Introducing

x = 2t1/2, y = tm/2+1/4 e−t/2z(t) (3.34)

equation (3.33) is transformed to

y ′′(x) +

[
−m2 − 1/4

x2
+

(m + 1)

2
− x2

16
+ n

]
y(x) = 0. (3.35)

This is a class C factorizable equation [1] and the ladder operators for yn,m are

R =
[
m + 1/2

x
+

x

4

]
− d

dx
, L =

[
m − 1/2

x
+

x

4

]
+

d

dx
(3.36)

and their action on yn,m is given by

Ryn,m =
√

n − (m + 1)yn,m+1, Lyn,m = √
n − myn,m−1. (3.37)

Observe that these are first-order operators in contrast to the second-order raising and
lowering operators that were found in [9] for these functions. These operators satisfy [R,L] =
I . Although D does not close a Lie algebra with R,L it satisfies [D,R − L] = −(R − L).
(Observe that R − L is independent of m). Moreover, since this commutation relation is
formally the same as that between D and T (see equation (2.2)) we infer that

eαD eβ(R−L) = eβ e−α

eβ(R−L) eαD. (3.38)

Higher order recursion relations for the yn,m can be derived by considering the n successive
applications of D to the commutation relation [D,R − L] = −(R − L) which leads
to [D, [. . . , [D,R − L]] . . .] = (−1)n(R − L). In particular the commutation relation
[D,R − L] = −(R − L) leads to

x{y ′′
n,m +

√
n − (m + 1)y ′

n,m+1 − √
n − my ′

n,m−1}
= √

n − myn,m−1 −
√

n − (m + 1)yn,m+1 − yn,m. (3.39)

We can simplify this recursion relation further by replacing y ′′ by its equivalent using
equation (3.35).

4. Addition formulae

In this section, we present some additional applications to the action of the dilatation and
translation operators on the families of the special functions which were discussed above. In
particular, we present examples how the Lie group action of these operators can be used to
derive addition formulae under the combined action of translations and dilatations. Similar
results can be obtained for the Hermite functions and the associated Laguerre polynomials.
To some extent the results in this section can be viewed as special applications of the formulae
derived in [19–22] for the general action of operators in the form exp

(
f (x) d

dx
+ g(x)

)
(where

f (x), g(x) are some general functions).

4.1. Hermite polynomials

To derive addition formulae for the Hermite polynomials, we apply the operator eαD by itself
or in combination with eβL, eβR . Thus

eαDHn(x) = Hn(e
αx) =

∞∑
m=0

αm

m!
DmHn(x) (4.1)
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where DmHn has been evaluated in equation (3.9). Similarly we can apply the operator
eαD eβL to obtain

eαD eβLHn(x) = Hn(e
αx + β) =

∞∑
m=0

βm

m!

m∑
k=0

2k

(
m

k

)
(eαDHn−k(x)) (4.2)

where the action of eαD on each Hj(x) is given by equation (4.1). As these formulae involve
infinite summation they can be used in various approximation schemes.

4.2. Bessel functions

On the Lie group level, we can obtain an expression for eαDJn(r) which is similar to
equation (4.1) which utilizes the recursion relation (3.24) or equation (3.26). For the dual
action of dilatation and translations we have

eαD eβT Jn(r) = Jn(e
αr + β) (4.3)

to obtain using equation (3.25)

Jn(e
αr + β) =

∞∑
j=0

∞∑
m=0

αjβm

2mm!j !

m∑
k=0

(
m

k

)
(DjJn+m−2k(r)) (4.4)

where DjJn+m−2k(r) can be evaluated using equation (3.26).

5. Generalized ladder operators

In this section, we derive generalized ladder operators for the classes of special functions
which were discussed previously. These operators act on these functions when their dependence
on x is replaced by eαx or x + β.

To find these operators, we derive first formulae which relate the action DnR to that RDn

(and similar formulae involving L, T ). We then use these to relate the group action of D, T to
those of the regular ladder operators R,L on these functions (i.e. compute the relation between
the action eαDR and ReβD etc).

5.1. Hermite polynomials

In this case the Lowering operator L is also the translation operator. Hence we need to compute
only the formulae involving R and D.

A short calculation using equation (3.5) shows that the following holds:

1. When n is odd

DnR = R(D + 1)n + 2L

[n/2]∑
m=0

(
n

2m

)
D2m. (5.1)

2. When n is even

DnR = R(D + 1)n + 2L

n/2−1∑
m=0

(
n

2m + 1

)
D2m+1. (5.2)
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We then infer that

eαDR = [eαR + 2L sin hα] eαD. (5.3)

Applying this relation to Hn(x) yields

Hn+1(e
αx) = [eαR + 2L sin hα]Hn(e

αx) (5.4)

i.e. the operator eαR + 2L sin hα is the raising operator for the functions Hn(eαx).
Using equations (2.7), (3.2) we find that for the lowering operator L

LmHn(e
αx) = emα2mm!

(
n

m

)
Hn−m(eαx), m � n (5.5)

i.e. the generalized lowering operator is e−αL.
For the translation operator (=L) we have from equation (3.4)

LnR = RLn + 2nLn−1. (5.6)

Hence

eαLR = [R + 2α] eαL. (5.7)

By applying this relation to Hn(x) we obtain

Hn+1(x + α) = [R + 2α]Hn(x + α). (5.8)

We observe that we can now combine the action of the translation and dilatation operators with
R (or L) to obtain ladder operators acting on Hermite polynomials with coordinate stretching
and translations. Thus

eβL eαDR = [eαR + 2β eα + 2L sin h(α)] eβL eαD. (5.9)

This leads to

Hn+1(e
αx + β) = [eαR + 2β eα + 2L sin h(α)]Hn(e

αx + β). (5.10)

(Similar observations hold for the Hermite and Bessel functions which are treated next.)

5.2. Hermite functions

We follow the same procedure outlined in the previous sub-section to derive generalized raising
and lowering operators for these functions. It is easy to show that the following holds:

1. When n is odd

DnR = R

[n/2]∑
m=0

(
n

2m + 1

)
D2m+1 + L

[n/2]∑
m=0

(
n

2m

)
D2m. (5.11)

2. When n is even

DnR = R

n/2∑
m=0

(
n

2m

)
D2m + L

n/2∑
m=0

(
n

2m − 1

)
D2m−1. (5.12)

From these formulae we infer that

eαDR = [cos h(α)R + sin h(α)L] eαD. (5.13)

Applying this relation to hn(x) yields

[2(n + 1)]1/2hn+1(e
αx) = [cos h(α)R + sin h(α)L]hn(e

αx) (5.14)

i.e. the operator cos h(α)R + sin h(α)L is the raising operator for the functions hn(eαx).
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Since the commutation relations (3.16) are symmetric in L and R it follows that the
lowering operator for these function is

[2n]1/2hn−1(e
αx) = [sin h(α)R + cos h(α)L]hn(e

αx). (5.15)

For the Hermite functions, the translation operator satisfies T = L−R
2 . Hence it is

straightforward to show that

eαT R = (R + α) eαT , eαT L = (L + α) eαT . (5.16)

Hence

[2(n + 1)]1/2hn+1(x + α) = (R + α)hn(x + α), [2n]1/2hn−1(x + α) = (L + α)hn(x + α).

(5.17)

5.3. Bessel functions

It is easy to show using equation (3.23) that

DnR = R(D − 1)n, DnL = L(D − 1)n (5.18)

hence

eαDR = e−αR eαD, eαDL = e−αL eαD. (5.19)

This leads to the following raising and lowering operators for these functions,

Jn+1(e
αr) = e−αRJn(e

αr), Jn−1(e
αr) = e−αLJn(e

αr). (5.20)

Since the translation operator T = L−R
2 commutes with R,L we have

eαT R = R eαT , eαT L = L eαT (5.21)

and therefore

Jn+1(r + α) = RJn(r + α), Jn−1(r + α) = LJn(r + α). (5.22)

5.4. Associated Laguerre polynomials

Since D and the raising–lowering operators for the functions yn,m do not close a Lie
algebra, we can derive only partial results in this case using the operator R − L. Since
[D,R − L] = −(R − L) simple calculation yields

eαD(R − L) = e−α(R − L) eαD. (5.23)

This implies√
n − (m + 1)yn,m+1(e

αx) − √
n − m − 1yn,m−1(e

αx) = e−α(R − L)yn,m(eαx). (5.24)

6. Summary and conclusions

The dilatation operator plays a major role in many physical applications (e.g. quantum
field theory). The fact that it can be used to enlarge the Lie algebra for some classes of
factorizable equations is important in view of the key role that this method plays in various
physical applications. In this short paper, we addressed only some of the basic mathematical
applications of this enlargement of the Lie algebra and derived generalized ladder operators
for some classes of special functions under coordinate stretching and translations.

From another point of view we observe that classical orthogonal families of functions
were derived from solutions to differential equations. However, in the last 20 years wavelets
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which are classes of orthogonal functions with compact support appeared in the literature
without any ‘apparent link’ to solutions of differential equations. These orthogonal classes of
functions are generated by finite dilatations and translations of a ‘mother wavelet function’.
As shown in this paper solutions to some classes of factorizable equations have well-defined
properties with respect to these operators. This result establishes a link (albeit a weak and
indirect one) between these families of orthogonal functions (namely special functions and
wavelets).
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